The development of scientific thinking through John Dewey's method of reflective understanding of knowledge

  • Edward Faustino Loayza Maturrano Universidad Nacional Agraria La Molina
Keywords: John Dewey; investigative training; scientific thinking; reflective understanding

Abstract

An unresolved problem in the formation of investigative competence is how to develop scientific thinking in the future researcher, since procedures, strategies and methods are required to guide the process of knowledge generation. Thus, the purpose of this theoretical article is to conceive a way to develop scientific thinking through John Dewey's method of reflective understanding of knowledge. The interpretative-propositive theoretical study is complemented with a survey applied to university students, who manifest the effectiveness of the Dewey method in the formation of scientific thought. In the results and discussion, the five phases of Dewey's reflective thinking are explained: Problem recognition, establishment of provisional hypotheses, investigation of the current situation of the problem, hypothesis revision and hypothesis testing. Likewise, the understanding stage, the prediction stage and the analysis stage are analyzed to develop ideas. It is concluded that if students are systematically educated in the phases and stages of Dewey's reflective understanding of knowledge, they will be able to effectively develop scientific thinking.

Downloads

Download data is not yet available.

References

Aguayo, S., Benso, B., Cantarutti, C., Ortuño, D., & Véliz, C. (2022). Case-based learning to teach scientific thinking to dental students. Journal of Dental Education, https://doi.org/10.1002/jdd.12893

Arteaga, K. (2016). Desarrollo del pensamiento científico por medio de la metodología de grupos interactivos. Revista de Estudios y Experiencias en Educación, 13(26), 67-80. http://www.rexe.cl/ojournal/index.php/rexe/article/view/34

Boo, H, Toh, K. (1998). An investigation on the scientific thinking ability of fourth year university students. Research in Science Education 28, 491–506. https://doi.org/10.1007/BF02461512

Cloude, E., Dever, D., Wiedbusch, M., & Azevedo, R. (2020) Quantifying Scientific Thinking Using Multichannel Data With Crystal Island: Implications for Individualized Game-Learning Analytics. Frontiers in Education 5, 572546. https://doi.org/10.3389/feduc.2020.572546

Chamizo, J. (2017). Habilidades de pensamiento científico. México: Universidad Nacional Autónoma de México.

Dewey, J. (1989). Cómo pensamos. Nueva exposición de la relación entre pensamiento reflexivo y proceso educativo. Paidós.

Dunbar, K. N., & Klahr, D. (2012). Scientific Thinking and Reasoning. Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199734689.013.0035

Fadllan, A., Hartono, S, & Saptono, S. (2019). Analysis of students' scientific creativity and science process skills at UIN Walisongo Semarang. Journal of Physics: Conference Series, 1321(3), 032099. https://doi.org/10.1088/1742-6596/1321/3/032099

Gelman, A. (2018). How to Think Scientifically about Scientists’ Proposals for Fixing Science. Socius, 4. https://doi.org/10.1177/2378023118785743

Gouvea, J., Appleby, L., Fu, L., & Wagh, A. (2022). Motivating and shaping scientific argumentation in lab reports. CBE Life Sciences Education, 21(4), ar71. https://doi.org/10.1187/cbe.21-11-0316

He, Y. (2021). Research on computer application and cultivation of scientific thinking ability. Paper presented at the Journal of Physics: Conference Series, 1992(3) https://doi.org/10.1088/1742-6596/1992/3/032086

Hyytinen, H., Toom, A., & Shavelson, R. (2019). Enhancing scientific thinking through the development of critical thinking in higher education. Redefining scientific thinking for higher education: Higher-order thinking, evidence-based reasoning and research skills, 59-78. https://doi.org/10.1007/978-3-030-24215-2_3

Klahr, D., Zimmerman, C., & Matlen, B. (2019). Improving Students’ Scientific Thinking. In J. Dunlosky & K. Rawson (Eds.), The Cambridge Handbook of Cognition and Education (Cambridge Handbooks in Psychology, 67-99). Cambridge University Press. https://doi.org/10.1017/9781108235631.005

Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77, 319–337. https://doi.org/10.1002/sce.3730770306

Loayza, E. (2006). Investigación cualitativa en Educación. Investigación educativa, 10 (18), 75-85. https://revistasinvestigacion.unmsm.edu.pe/index.php/educa/article/view/3778

Loayza, E. (2016). El sexto pilar de la educación: el saber productivo o el aprender a producir. Tierra Nuestra, 11(1), 36-47. http://dx.doi.org/10.21704/rtn.v11i1.996

Loayza, E. (2019). Hermenéutica de la educación: análisis de las concepciones ideológicas para un proyecto educativo sostenible. Tierra Nuestra, 13(1), 61-70. http://dx.doi.org/10.21704/rtn.v13i1.1295

Loayza, E. (2020). La investigación cualitativa en Ciencias Humanas y Educación. Criterios para elaborar artículos científicos. Educare et comunicare 8(2), 56-66. https://doi.org/10.35383/educare.v8i2.536

Loayza, E. (2022). El aprendizaje móvil (m-learning) en la universidad en tiempos de la COVID-19: Una herramienta formativa en la Educación Superior. Educare et Comunicare, 10(1), 5-12. https://doi.org/10.35383/educare.v10i1.743

Loayza-Maturrano, E. (2021). Enfoques modernos para determinar el nuevo rol del docente. Sciéndo, 24(3), 177-183. https://doi.org/10.17268/sciendo.2021.023

McBain, B., Yardy, A., Martin, F., Phelan, L., Altena, I., McKeowen, J., Pemberton, C., Tose, H., Fratus, L., Bowyer, M. (2020). Teaching Science Students How to Think. International Journal of Innovation in Science and Mathematics Education, 28(2), 28-35. https://doi.org/10.30722/IJISME.28.02.003

Moore, C. (2018). Teaching science thinking: Using scientific reasoning in the classroom. Teaching science thinking: Using scientific reasoning in the classroom, 1-197. https://doi.org/10.4324/9781315298634

Ryan, M., & Ryan, M. (2012). Developing a systematic, cross-faculty approach to teaching and assessing reflection in higher education. Canberra, Australia. https://research.qut.edu.au/eportfolio/wp-content/uploads/sites/186/2018/03/ALTC_Final_Report_Part_1_PP9-1327.pdf

Schlatter, E., Molenaar, I., & Lazonder, A. (2021). Learning scientific reasoning: A latent transition analysis. Learning and Individual Differences, 92. https://doi.org/10.1016/j.lindif.2021.102043

Suparman, A., Rohaeti, E., & Wening, S. (2022). Development of attitude assessment instruments towards socio-scientific issues in chemistry learning. European Journal of Educational Research, 11(4), 1947-1958. https://doi.org/10.12973/eu-jer.11.4.1947

Zimmerman, C., and Croker, S. (2014). A prospective cognition analysis of scientific thinking and the implications for teaching and learning science. Journal of Cognitive Education and Psychology, 13 (2), 45–257. https://doi.org/10.1891/1945-8959.13.2.245
Published
2023-02-08
How to Cite
Loayza Maturrano, E. F. (2023). The development of scientific thinking through John Dewey’s method of reflective understanding of knowledge. EDUCARE ET COMUNICARE Revista De investigación De La Facultad De Humanidades, 10(2), 15-26. https://doi.org/10.35383/educare.v10i2.817